

www.spirit-project.eu

Grant Agreement No.: 101070672 Topic: HORIZON-CL4-2021-HUMAN-01-25
Call: HORIZON-CL4-2021-HUMAN-01 Type of action: HORIZON-RIA

D2.1 USE CASE REQUIREMENTS, SYSTEM
ARCHITECTURE AND INTERFACE DEFINITION

(FIRST VERSION)

Work package WP2

Task Tasks 2.1, 2.2

Due date 30/09/2023

Submission date 31/12/2023

Deliverable lead University of Surrey

Version 1.0

Authors Ning Wang - Editor (UoS), Tim Wauters (imec), Nick Turay (EDD), Christoph Stielow
(TSI), Peter Hofmann (DT-Sec), Sergio Tejeda Pastor (Fraunhofer HHI), Hermann
Hellwagner, Minh Nguyen (UNI-KLU), Peng Qian (UoS), Taras Motulski (AWTG)

Reviewers Hermann Hellwagner (UNI-KLU)

Abstract This deliverable presents the human-to-human and human-machine telepresence
use cases developed by the SPIRIT project team and articulates general network,
transport and application requirements for supporting such applications. The first
version of the designed SPIRIT architecture is also specified in this document.

Keywords Telepresence, use cases, network requirements, transport requirements, application
requirements, security, architecture design.

SPIRIT | D2.1: USE CASE REQUIREMENTS, SYSTEM ARCHITECTURE AND INTERFACE

DEFINITION (FIRST VERSION)

© 2022-2025 SPIRIT Consortium Page 2 of 38

DISCLAIMER

The information, documentation and figures available in this deliverable are written by the
"Scalable Platform for Innovations on Real-time Immersive Telepresence" (SPIRIT) project’s
consortium under EC grant agreement 101070672 and do not necessarily reflect the views of
the European Commission.

The European Commission is not liable for any use that may be made of the information
contained herein.

COPYRIGHT NOTICE

© 2022 - 2025 SPIRIT Consortium

Project co-funded by the European Commission in the Horizon Europe Programme

Nature of the deliverable: to specify R, DEM, DEC, DATA, DMP, ETHICS, SECURITY, OTHER*

Dissemination Level

PU
Public, fully open, e.g. web (Deliverables flagged as public will be automatically
published in CORDIS project’s page)

✓

SEN Sensitive, limited under the conditions of the Grant Agreement

Classified R-UE/ EU-R EU RESTRICTED under the Commission Decision No2015/ 444

Classified C-UE/ EU-C EU CONFIDENTIAL under the Commission Decision No2015/ 444

Classified S-UE/ EU-S EU SECRET under the Commission Decision No2015/ 444

* R: Document, report (excluding the periodic and final reports)

DEM: Demonstrator, pilot, prototype, plan designs

DEC: Websites, patents filing, press & media actions, videos, etc.

DATA: Data sets, microdata, etc.

DMP: Data management plan

ETHICS: Deliverables related to ethics issues.

SECURITY: Deliverables related to security issues

OTHER: Software, technical diagram, algorithms, models, etc.

EXECUTIVE SUMMARY

https://eur-lex.europa.eu/legal-content/EN/ALL/?uri=CELEX:32015D0444
https://eur-lex.europa.eu/legal-content/EN/ALL/?uri=CELEX:32015D0444
https://eur-lex.europa.eu/legal-content/EN/ALL/?uri=CELEX:32015D0444

SPIRIT | D2.1: USE CASE REQUIREMENTS, SYSTEM ARCHITECTURE AND INTERFACE

DEFINITION (FIRST VERSION)

© 2022-2025 SPIRIT Consortium Page 3 of 38

This deliverable provides the first version of the requirement analysis through a set of identified
telepresence use cases of the SPIRIT project, which is followed by the introduction of the
overall SPIRIT architecture. First, we present a range of use cases that encompass different
telepresence application scenarios and requirements. These include both complex inter-
human communications (e.g. bi-directional interactive and multi-source application scenarios)
as well as human-machine oriented applications. The objective is to comprehensively identify
and analyse the application and system requirements for a wide range of telepresence
application scenarios. We classify them according to the following categories: network
requirements, transport requirements, application performance requirements and security
requirements, each of which is analysed in detail in this deliverable. We also present the overall
SPIRIT architecture that provides a systematic view on different building blocks of the platform
that will be used for supporting different application use cases developed by both the project
team and third-party participants.

TABLE OF CONTENTS

SPIRIT | D2.1: USE CASE REQUIREMENTS, SYSTEM ARCHITECTURE AND INTERFACE

DEFINITION (FIRST VERSION)

© 2022-2025 SPIRIT Consortium Page 4 of 38

Disclaimer ..2

Copyright notice ...2

1. INTRODUCTION ..8

2. SPECIFICATION OF USE CASES ...9

2.1 Real-time human-to-human interaction ... 10

2.2 Real-time human-machine interactions ... 19

2.3 Potential Application Areas ... 21

3. REQUIREMENTS AND RECOMMENDATIONS .. 24

3.1 Network requirements ... 24

3.2 Transport requirements and recommendations... 24

3.3 Application requirements .. 25

3.4 Security requirements ... 25

3.5 General recommendations.. 27

4 THE SPIRIT ARCHITECTURE ... 30

4.1 SPIRIT platform architecture ... 30

4.2 Security architecture ... 33

5 CONCLUSIONS ... 37

6 REFERENCES ... 38

LIST OF FIGURES

SPIRIT | D2.1: USE CASE REQUIREMENTS, SYSTEM ARCHITECTURE AND INTERFACE

DEFINITION (FIRST VERSION)

© 2022-2025 SPIRIT Consortium Page 5 of 38

FIGURE 1: SKETCH OF POSSIBLE USE-CASES ENABLED BY REAL-TIME TELEPRESENCE
COMMUNICATIONS .. 9

FIGURE 2: FRAMEWORK FOR LIVE TELEPORTATION ... 11

FIGURE 3: SYSTEM ARCHITECTURE OF AVATAR ANIMATION, SPLIT RENDERING AND
STREAMING .. 14

FIGURE 4: HOLOGRAPHIC COMMUNICATION USE-CASE OVERVIEW 16

FIGURE 5: CAMPUS ECOSYSTEM ... 21

FIGURE 6: HIGH-LEVEL SPIRIT PLATFORM ARCHITECTURE ... 30

FIGURE 7: DETAILED SPIRIT PLATFORM ARCHITECTURE ... 32

FIGURE 8: END-TO-END SECURITY... 35

ABBREVIATIONS

2D - Two-Dimensional

SPIRIT | D2.1: USE CASE REQUIREMENTS, SYSTEM ARCHITECTURE AND INTERFACE

DEFINITION (FIRST VERSION)

© 2022-2025 SPIRIT Consortium Page 6 of 38

3D - Three-Dimensional

5G - Fifth Generation

6DoF - 6 Degrees of Freedom

AMR - Autonomous Mobile Robot

API - Application Programming Interface

AR - Augmented Reality

CUDA - Compute Unified Device Architecture

CPU - Central Processing Unit

DASH - Dynamic Adaptive Streaming over HTTP

DDOS - Distributed Denial of Service

DoS - Denial of Service

ECN - Explicit Congestion Notification

eMBB - Enhanced Mobile Broadband

FPS - Frames Per Second

GDPR - General Data Protection Regulation

GPU - Graphics Processing Unit

ICE - Interactive Connectivity Establishment

IDS - Intrusion detection system

IMU - Inertial Measurement Unit

IP - Internet Protocol

KPIs - Key Performance Indicators

LiDAR - Light Detection and Ranging

LL-DASH - Low-latency DASH

L4S - Low Latency, Low Loss, Scalable throughput

MEC - Mobile Edge Computing

MR - Mixed Reality

NFOV - Narrow Field-of-View

SPIRIT | D2.1: USE CASE REQUIREMENTS, SYSTEM ARCHITECTURE AND INTERFACE

DEFINITION (FIRST VERSION)

© 2022-2025 SPIRIT Consortium Page 7 of 38

NR - New Radio

OS - Operating System

PC - Personal Computer

POI - Point of Interest

RAM - Random Access Memory

RGB - Red, Green, Blue

RTT - Round Trip Time

SAML - Security Assertion Markup Language

SCTP - Stream Control Transmission Protocol

SDK - Software Development Kit

SFC - Service Function Chaining

SSL - Secure Sockets Layer

STUN - Session Traversal Utilities for NAT

TCB - Trusted Computing Base

ToF - Time of Flight

TLS - Transport Layer Security

TURN - Traversal Using Relays around NAT

USB - Universal Serial Bus

VR - Virtual Reality

WSL - Windows Subsystem for Linux

WebRTC - Web Real-Time Communication

XR - Extended Reality

HTTPS - Hypertext Transfer Protocol Secure

SPIRIT | D2.1: USE CASE REQUIREMENTS, SYSTEM ARCHITECTURE AND INTERFACE

DEFINITION (FIRST VERSION)

© 2022-2025 SPIRIT Consortium Page 8 of 38

1. INTRODUCTION

This document is composed as an interim deliverable from Work Package 2 (WP2)
"Requirements and platform architecture definition" of the SPIRIT Project. It aims to
elaborate the requirements associated with heterogeneous telepresence use cases and to
introduce the overall SPIRIT architecture for facilitating the realisation of these use cases.

The use cases, detailed in Section 2 of this deliverable, are classified as follows:

(1) Interactive human-to-human telepresence applications. These use cases mainly
focus on real-time streaming of telepresence media, but the specific scenarios range
from immersive one-to-one interactions between remote end users, to the more
complex case involving multi-party telepresence sessions across different
geographical network locations. These use cases consider both avatar-based
telepresence and direct streaming of captured human bodies, representing different
application scenarios and requirements.

(2) Real-time human-machine interaction applications. This use case category
considers the application scenario where end users rely on immersive telepresence
applications to conduct live interactions with remote machines such as moving robots.
In this case the key technical challenge is the necessity of performing real-time remote
control over the machine in the field based on the immersive feedback from the live-
streamed media.

Based on these use cases, we further identify the corresponding requirements for supporting
the operation of these applications in real-life environments. Such requirements are classified
into the following categories in this deliverable: network requirements, transport requirements,
application and performance requirements, and security requirements. Detailed elaborations
on each of these requirement categories are presented in Section 3. Finally, in Section 4 we
introduce the initial design of the overall SPIRIT architecture, which encompasses all
necessary system components required to realise the identified use cases in real-life
environments. This generic architecture can be instantiated based on specific use case
scenarios, thus helping the project team to implement and demonstrate them based on tailored
support from the underlying system components. The architecture presented in this deliverable
will be updated in follow-up WP2 deliverables in the future with further enhancements.

SPIRIT | D2.1: USE CASE REQUIREMENTS, SYSTEM ARCHITECTURE AND INTERFACE

DEFINITION (FIRST VERSION)

© 2022-2025 SPIRIT Consortium Page 9 of 38

2. SPECIFICATION OF USE CASES

Several application use cases are being developed by the project team within the SPIRIT
framework. These scenarios will be then complemented by those provided by the Open Call
participants. There are two main categories regarding the use cases: real-time human-to-
human communication and real-time human-to-machine interaction.

• Real-time human-to-human interactions

One of the use cases considered in the project is the real-time communication between two
humans through the use of Extended Reality (XR) devices and the three-dimensional (3D)
representation of one of the peers. Figure 1 shows a variety of scenarios to which the
developments carried out in this project can be applied.

FIGURE 1: SKETCH OF POSSIBLE USE-CASES ENABLED BY REAL-TIME TELEPRESENCE COMMUNICATIONS

This type of real-time communication applications involves, in general, specific requirements
such as low latency and high bandwidth. Several state-of-the-art technologies will be used to
overcome these difficulties and guarantee a high-quality experience by the users. A
combination of novel compression and rendering techniques together with low-latency
streaming mechanisms will be key to achieve the necessary performance goals.

On another level, the realism in the representation of the human peers plays a fundamental
role when creating an immersive telepresence environment. This challenge is addressed in
different ways within the project, with a variety of scenarios that use the generation of 3D
holographic representations of the human peers or realistic avatars animated in real-time from
a media source.

• Real-time human-machine interactions

The project also made efforts in exploring human-machine interactions. For this, a use case
for intralogistics was devised to enable remote steering of AMRs.

The use case describes a human-initiated scenario to teleoperate multiple robots in different
locations providing flexibility in accessing and controlling robots in diverse environments,
reducing the need for physical presence. The goal is to give the operator the necessary tools
to safely control the robot from far away. A variety of different sensors like camera and Light
Detection and Ranging (LiDAR) have been utilised to achieve this.

For this specific type of human-machine communication two major challenges have been
identified.

SPIRIT | D2.1: USE CASE REQUIREMENTS, SYSTEM ARCHITECTURE AND INTERFACE

DEFINITION (FIRST VERSION)

© 2022-2025 SPIRIT Consortium Page 10 of 38

The first challenge is to provide all the necessary information of the robot’s surroundings to the
operator in a time critical manner so that the operator can make useful decisions based on this
information. For the teleoperation of robots this means that the data needs to be transmitted
and displayed in real time. This problem becomes even more challenging when thinking about
multiple sensors and even multiple robots transmitting data in real time.

The second major challenge identified is about the actual operation of the robot. How can the
operator interact with robots in a safe way? Just like the presentation of sensor data, it is
important that the drive commands coming from the operator are executed in near real time.
This is important, because it again gives the operator a chance to make useful decisions based
on the information he/she has in this very moment. Furthermore, it can be beneficial for the
operator to have multiple helping mechanisms implemented to minimise the risk of accidents
happening. One example is the emergency stop that stops the robot whenever something gets
too close to the robot. Another good example would be an automated fine positioning which is
not only safer but probably also faster than doing it manually.

2.1 REAL-TIME HUMAN-TO-HUMAN INTERACTION

In the digital age, real-time human-to-human interactions have become a cornerstone of our
daily lives, fundamentally altering the way we communicate, connect, and collaborate. This
paradigm shift is characterized by the immediacy and fluidity with which individuals can engage
with one another, breaking down geographical barriers and fostering a sense of instant
connectivity.

The rise of augmented reality (AR) and virtual reality (VR) technologies has taken real-time
interactions to the next level. These immersive technologies offer a more natural and authentic
experience by capturing non-verbal cues, gestures, and spatial awareness, enhancing the
overall quality of communication.

While real-time interactions bring numerous benefits, it is essential to address challenges such
as bandwidth limitations, technological accessibility, and the potential for information overload.
As technology continues to advance, these challenges are being met with innovative solutions,
ensuring that real-time human-to-human interactions remain a driving force in shaping the
future of communication.

2.1.1 Live teleportation with Fifth Generation (5G) MEC support

This use case is about live teleporting people from remote Internet locations to a common
virtual space of the audience such that the audience can have the immersive and multisensory
perception that everyone is located in the common physical scene. One application scenario
is distributed virtual performances where actors can physically perform (e.g. dance) at different
locations but their live holograms can be simultaneously teleported to a “virtual stage” where
the audience can enjoy the entire performance event constituting the virtual holograms of real
performers from different remote locations.

2.1.1.1 Specification of the use case operation

 below shows the overall framework of the end-to-end network support of live teleportation
applications based on the open source platform LiveScan3D .

SPIRIT | D2.1: USE CASE REQUIREMENTS, SYSTEM ARCHITECTURE AND INTERFACE

DEFINITION (FIRST VERSION)

© 2022-2025 SPIRIT Consortium Page 11 of 38

At the content source side (e.g. the person to be captured and teleported), multiple sensor
cameras (e.g. Kinect Azure DK cameras) are used to capture the object from different
directions and each camera is connected to a local Personal Computer (PC) which is
responsible for local processing of the raw content data, which is in point cloud data format.

At the 5G Multi-access Edge Computing (MEC) server side, the pre-processed local data are
further streamed to the production server responsible for integrating frames produced from
different clients for the same captured object. The production server can optionally be located
at a 5G MEC site. As shown in Figure 2, a common 5G MEC server can be used for providing
remote production services to all the regional clients. In this case local frames from individual
clients are streamed in real-time to the local 5G MEC server through 5G new radio (NR)
uplinks.

On the receiver (content consumer) side, the 5G MEC server can be used to perform real-time
synchronisation on the incoming frames from multiple sources at different locations. The
purpose is to eliminate possible consumer-perceivable motion-misalignment effects caused by
uncertainties of frame arrival time. Such uncertainties can be caused by a wide range of factors
such as path distances and conditions from different sources to the consumer side, as well as
the working load of remote clients. The frame synchronisation operation is typically based on
a simple algorithm for frame pairing approximation based on the timestamp embedded in each
incoming frame. A detailed specification of the synchronisation function can be found in [2].
Finally, the synchronised frames from the local MEC can be streamed in real-time to local
consumer devices such as Microsoft HoloLens devices through 5G NR downlinks (forwarded
to the Head-Mounted Displays (HMDs) by Wi-Fi via tethering).

FIGURE 2: FRAMEWORK FOR LIVE TELEPORTATION

2.1.1.2 Application performance target of the use case

Now we explain the user-oriented non-functional requirements on this use case. We focus on
the following application key performance indicators (KPIs) and the suggested values to
minimally support a satisfactory user experience.

• Content resolution level: This metric represents the picture resolution for each frame.
The LiveScan3D platform provides the resolution levels between Near Field-of-View

SPIRIT | D2.1: USE CASE REQUIREMENTS, SYSTEM ARCHITECTURE AND INTERFACE

DEFINITION (FIRST VERSION)

© 2022-2025 SPIRIT Consortium Page 12 of 38

(NFOV) mode (75,000 points) up to UHD (3,756,000 points), and each level requires a
specific data rate support.

• Frame rate: This metric indicates the smoothness of the playback perceived by the
consumer and typically it is represented as frames per second (FPS). The maximum FPS
is normally determined by the camera capacity, e.g. the Azure DK cameras have the
capacity of 30 FPS. It is also worth mentioning that network impairment may affect the
FPS performance that can be perceived on the receiver side as compared to the camera’s
FPS capacity. The general requirement is that the user received FPS should be
statistically the same as the frame capacity at the camera side, meaning that the network
delivery of these frames should not jeopardise the FPS performance from the source to
the receiver side.

• Playback latency: This metric refers to the time gap between what is exactly happening
in front of the cameras and the time point when the receiver actually sees it during
playback. Same as conventional video applications, this is an essential metric for
supporting interactive communications between end users. Specific to the scenario of
multi-point to point teleportation without bi-directional interaction, there will be no stringent
playback latency requirement. However, if the application involves multi-party interactions,
then the playback latency will be essential which should be below 500ms. The playback
latency perceived by the end user may consist of the latency contributions from the
following: processing latency (encoding, decoding and frame buffering) and also the
network latency between the source and the destination sides.

• Frame pairing error: This metric is specific to the multi-source teleportation scenario,
which is about the synchronisation accuracy of playing back live frames streamed from
different Internet locations. There has not been any subjective user QoE analysis on this,
and it also depends on the movement of the objects being teleported. We believe that sub
100ms is reasonable for general frame synchronisation requirements.

2.1.1.3 Environmental requirements

• Application hardware and configuration: To support a 30 FPS frame rate at the FHD
resolution level from multiple sources, the MEC server needs to have a minimum of two
Nvidia A6000 GPU cards, complemented by a matching CPU and memory capacity. The
MEC server should run the Windows Server 2019/2022 operating system and incorporate
a virtual machine solution like the Windows Subsystem for Linux (WSL) to facilitate offline
point cloud processing functions. On the content source side, for a single-user multi-view
scenario, Kinect Azure DK cameras should be employed as capture devices. It is
recommended to use no more than 4 cameras at FHD resolution, with each camera paired
with a laptop that meets a minimum requirement of an Nvidia GTX 1060. On the user side,
a HoloLens 2 or another HMD with equivalent point cloud data rendering capabilities is
required.

• Network platform and configuration: The network should be a 5G network that adheres

to at least Release 15 with a standalone architecture, allowing multi-user registration and

data plane establishment. The access type should be 5G Enhanced Mobile Broadband

(eMBB) as the radio access type to guarantee sufficient bandwidth for video streaming in

both uplink and downlink directions. The split ratio of uplink and downlink bandwidth can

be adjusted based on the user's role in sending or receiving holograms. The 5G terminal

should be situated at the optimal line-of-sight according to the base station antenna angle,

ensuring that no obstructions hinder the signal path. The HoloLens 2 headset needs to be

tethered to a 5G phone for user session registration and initialisation in the 5G network.

SPIRIT | D2.1: USE CASE REQUIREMENTS, SYSTEM ARCHITECTURE AND INTERFACE

DEFINITION (FIRST VERSION)

© 2022-2025 SPIRIT Consortium Page 13 of 38

Assuming the captured content is an adult standing two meters away from the camera,

with the ZSTD [3] compression algorithm enabled, different resolutions demand varying

network resources (like bandwidth). The detailed information for different resolution levels

are: NFOV: requires 20 Mbps uplink bandwidth to effectively support full FPS with reduced

frame latency; HD: requires 150 Mbps uplink bandwidth; FHD: demands 300-400 Mbps

uplink bandwidth; it is advised to tweak the default ratio split configuration; UHD: calls for

700-800 Mbps bandwidth, but its FPS performance might be restricted by client-side

processing capacities. For scenarios involving multi-user interactions, HD or lower

resolutions are recommended. The default uplink configuration of 5G (e.g., 200 Mbps) can

support up to 3 users, maintaining a 25 FPS performance.

• Software functionality and configuration: On the content source side, LiveScan3D [1]
(referred to as the LiveScan3D client) should be deployed alongside the Microsoft Kinect
SDK and Body Tracking library [4] to support real-time point cloud capture. The captured
content will be filtered by a pre-trained deep learning algorithm to detect and isolate the
human body. The filtered point cloud data can either be saved to a local disk or directly
transferred to a remote MEC server. The client will operate as a TCP client by default,
proactively connecting to the remote MEC TCP server. The MEC server will deploy
LiveScan3D [1] (referred to as the LiveScan3D server) to request/receive, process,
calibrate, and merge content from one or multiple sources, or to transmit it to user devices.
Additionally, the MEC server is equipped to display the real-time rendered point cloud
data. On the user side, the HoloLens 2, equipped with TCP connectivity and a
Unity/MRTK-based [5] point cloud rendering function, can receive and display the point
cloud in real-time.

• Performance enhancement features: To offer enhanced user interactive functionalities
with multisensory feedback, such as haptic feedback, the laptop on the content source
side can be paired with additional hardware, like a haptic glove. To enhance performance
robustness amid network uncertainties, features such as Multi-TCP connections and
intent-aware network adaptation can be integrated into the platform as needed.
Additionally, the platform supports a RESTful API, providing an interface that
authenticated external entities can use to query and modify content and network settings,
such as resolution levels.

2.1.2 Real-time Animation and Streaming of Realistic Avatars

The realistic volumetric representation of human beings has become an important topic in the
last few years. The increasing demand of real-time telepresence scenarios presents a valuable
opportunity to develop applications that portray the users in a much more immersive way than
how it had been done in the past. This, in combination with Mixed Reality (MR) devices,
guarantees a better overall experience.

Such applications, however, present novel technical challenges that need to be overcome to
ensure a fluent and comfortable communication. The significant amount of data that a
photorealistic avatar comprises, and the variable conditions of the network are two of the
hurdles that need to be addressed. Besides this, the animation of the three-dimensional object
must be done in real-time, taking some kind of media as an input (audio, video, text, 6 Degrees
of Freedom (6DoF) position). This brings additional flexibility to the representation.

This use case proposes a scenario in which the avatar is animated by an animation library that
makes use of a neural network. The input to this network is media captured on a mobile device.

SPIRIT | D2.1: USE CASE REQUIREMENTS, SYSTEM ARCHITECTURE AND INTERFACE

DEFINITION (FIRST VERSION)

© 2022-2025 SPIRIT Consortium Page 14 of 38

The rendering of the object is split between a cloud server and the consumer client device, to
reduce the amount of data to be transmitted. In the network, low latency is guaranteed using
congestion control algorithms. The local user device performs the integration of the avatar into
the real world and allows the user to interact with it. The following video shows an example of
the application: Splitrendering_avatar_head_rotation

2.1.2.1 Specification of the use case

FIGURE 3: SYSTEM ARCHITECTURE OF AVATAR ANIMATION, SPLIT RENDERING AND STREAMING

The cloud-based streaming for avatar animation, illustrated in Figure 3, shifts the
computationally intense rendering from the client to the MEC server, while providing a reliable
interaction to users through low latency streaming. The SplitRendering library [6] on the server
manages to transport media / user metadata via Websockets and WebRTC over the network.
It receives the captured media (i.e., recorded audio) from the client and feeds it into the avatar
animation library, a media-driven component which generates non-pre-captured real-time
interactive animation. The rendering engine (Unity) renders the interactive avatar and
generates a two-dimensional (2D) image of the 3D object from the proper angle, according to
the current position and orientation of the final user. This 2D image is then compressed by a
hardware encoder (e.g., NVEnc) and transmitted to the client.

The Player application on the client renders the 2D video synchronized with the user viewport
on AR / VR mobile devices by leveraging existing 2D video decoding codecs such as H.264 or
H.265. The original solid colour present in the background of the rendered image is here
removed, achieving a better integration of the avatar in the real scene. At the same time, this
client application sends information about the position and rotation of the avatar to the server,
to synchronise the rendering view and provide the feeling that the whole 3D object is being
rendered in the client device, although only 2D images are being received, therefore reducing
the required bandwidth significantly. On this application, the user can as well interact with the
avatar by scaling it and adjusting its position. The avatar addresses the user by adjusting the
head rotation to ensure that there is a natural eye contact in the scene.

The network space is considered to be in a mobile network with the bottleneck being the
access link between the mobile devices and the base station with Explicit Congestion
Notification (ECN) marking to signal congestion severity to the client. The server adjusts the

https://datacloud.hhi.fraunhofer.de/s/BRfXbJkLB8CZ9jm

SPIRIT | D2.1: USE CASE REQUIREMENTS, SYSTEM ARCHITECTURE AND INTERFACE

DEFINITION (FIRST VERSION)

© 2022-2025 SPIRIT Consortium Page 15 of 38

encoding bitrate based on a rate adaptation algorithm (e.g. L4S - Low Latency, Low Loss and
Scalable Throughput1) with the congestion feedback sent by the client.

2.1.2.2 Application performance target of the use case

• Content resolution level: The resolution of the 2D image received by the user can be
selected prior to starting the server. The default resolution is 2560x1440, but lower and
higher (up to 4K) resolutions have also been tested successfully. When rendering the
image on the server, the field of view of the camera is adapted to the distance from the
user viewpoint to the avatar. The real resolution of the image that the user receives will
then vary, to guarantee that the whole object is always shown.

• Frame rate: The avatar animation library works at a frame rate of 25 FPS. Therefore, the
provided streaming works at that rate as well.

• Playback latency: The motion-to-photon latency varies depending on the network
conditions and the desired resolution. To guarantee the smoothness of the experience
and the proper adaptation to the user’s movement, the maximum acceptable latency is
200 ms.

2.1.2.3 Environment requirements of the use case

• Application hardware and configuration: The rendering functionalities of the use case
require the server machine to be equipped with an Nvidia GPU card that can work with
the Computed Unified Device Architecture (CUDA) platform (minimum version 11.3) and
has at least 8 GB of Random Access Memory (RAM), with a Central Processing Unit
(CPU) that can provide proper support to it. On the client side, the media capture device
must be an Android phone or tablet with Android 7.0+. The player application must run on
a device with Android version 8+ and capable of using ARCore. When using XR glasses,
the list of compatible phones must be consulted for each individual model.

• Network architecture and configuration: As mentioned, the streaming pipeline of the
system uses WebRTC to send audio, video, and data. The minimum required bandwidth
is 10 Mbps or 15 Mbps if working with 4K resolution. Both wired and wireless connections
can be used. For the latter, Wi-Fi or 5G are recommended. When streaming to a network
outside the one that hosts the server, the ports used by WebRTC, Websockets, Interactive
Connectivity Establishment (ICE) and Session Traversal Utilities for NAT (STUN) /
Traversal Using Relays around NAT (TURN) servers must be open. In order to allow the
use of congestion control mechanisms, such as L4S, the network must provide information
about its congestion status though ECN marking.

• Software functionality and configuration: On the server side, Ubuntu 20.04 LTS (Long
Term Support) must be available, as well as the corresponding Nvidia drivers and CUDA
11.3+. The streaming module of the server application uses Gstreamer to send and
receive audio and video, so a version 1.20+ of this framework must be installed in the
system. On the client, the tablet/phone player application requires ARCore to be installed
on the device. For the XR glasses, the required software by the vendor needs to be set

1 https://datatracker.ietf.org/doc/rfc9330/

https://datatracker.ietf.org/doc/rfc9330/

SPIRIT | D2.1: USE CASE REQUIREMENTS, SYSTEM ARCHITECTURE AND INTERFACE

DEFINITION (FIRST VERSION)

© 2022-2025 SPIRIT Consortium Page 16 of 38

up prior to using the system.

• Performance metrics: The set of parameters that can be used to evaluate the quality of
the streaming is based on the measurements of the received bitrate, link utilisation, latency
(RTT – round trip time, one-way delay), packet loss and frame rate.

2.1.3 Holographic Communications

Immersive telepresence, specifically holographic communications, denotes a technology
enabling individuals to engage in three-dimensional communication using data formats such
as point clouds or meshes. Unlike traditional communication methods like video or telephone
conversations, holographic communication strives to provide a more immersive and genuine
experience by streaming real-time 3D representations of individuals.

Following years of widespread adoption of video calls on smartphones and tablets, users
express keen anticipation for digital interactions facilitated by immersive communication
services, such as three-dimensional holographic AR calls over 5G networks [7]. Research
[8]indicates that over 50% of smartphone users expect holographic communication technology
to become accessible in the near future. With the expected rise in remote work in the coming
decade, many professionals will seek more immersive digital interaction methods. A recent
study identified the need for social interaction as a significant barrier to remote work [9]. This
suggests a promising future for holographic communication across diverse domains.
Anticipated applications span consumer and enterprise sectors, encompassing activities like
participating in family gatherings through holographic representations, receiving medical
consultations from home, engaging in remote office environments, accessing expert guidance
in industrial settings, and immersive marketing experiences.

The primary focus of holographic communication lies in real-time 3D human interaction use
cases that capture facial expressions and features during conversational calls, considering
asymmetrical communication where one person is captured and displayed as a hologram to
others.

2.1.3.1 Specification of the use case

FIGURE 4: HOLOGRAPHIC COMMUNICATION USE-CASE OVERVIEW

Figure 4 shows the overall concept of the holographic communication use-case
implementation.

The use case involves two users, with one user running a producer application on a PC or
cloud system connected to a commercially available depth camera and one user running a
consumer application on an Android mobile phone. The camera is equipped with a software
development kit (SDK) that provides application programming interfaces (APIs) for 3D data
processing that can be used by the producer application based on the Python programming

SPIRIT | D2.1: USE CASE REQUIREMENTS, SYSTEM ARCHITECTURE AND INTERFACE

DEFINITION (FIRST VERSION)

© 2022-2025 SPIRIT Consortium Page 17 of 38

language. The consumer application is based on the Unity game engine offering various
extensions for 3D processing as well.

In the use case, the face or upper body of the user on the producer side is captured by the
depth camera, providing both colour and spatial information for the producer application, which
is processed on the PC or cloud system running the application. The first processing step
involves creating a point cloud using the synchronised RGB and depth images previously
captured by the depth camera. The point cloud is then converted into a mesh, which is
displayed in the form of surfaces. To do this, the edges between the vertex coordinates are
calculated to form triangles from neighbouring points in the point cloud. The mesh containing
geographical and texture information is then encoded in order to reduce the bandwidth
required for data transmission while largely preserving the original quality of the mesh.

Once the mesh, hereafter referred to as 3D data, is compressed, the producer application
starts streaming the 3D data to the user running the consumer application. The 3D data is
streamed in a peer-to-peer process using Web Real-Time Communication (WebRTC) in
conjunction with the TCP-based WebSocket protocol for signalling purposes. Signalling is
carried out with the help of a signal server provided by the use case provider, namely Ericsson.

The user on the consumer side, who is equipped with an Android mobile phone connected to
the AR glasses via USB-C, receives the 3D data stream. The first step involves decoding the
data on the mobile phone. The 3D data is then filtered and rendered. The user on the consumer
side then sees an authentic human 3D representation of the user on the producer side in real
time via the AR glasses.

To further improve the QoE of the users within the use case, the producer application offers
various options for adapting the 3D content to the available resources, e.g. filtering the RGB
and depth frames to adjust the resolution of the final 3D representation, changing the intensity
of the compression for data transmission or setting the spatial distance threshold between the
object and the depth camera to remove the background pixel not of interest.

2.1.3.2 Application performance target of the use case

For the application performance target all requirements are based on preliminary tests using a
depth camera (Intel RealSense D435i), a laptop (HP using a CPU based on the 11th Gen
Intel(R) Core (TM) i5-1145G7 @ 2.60GHz and 32 GB of RAM), a mobile phone (Oppo Find
X2 Pro) running Android and a pair of AR glasses (XReal Light).

• Content resolution level: The user has the flexibility to adjust the resolution in two ways.
Firstly, assuming an Intel RealSense depth camera, directly through the camera API,
offering a range of available resolutions from 320x180 to 1280x720 pixels.
Alternatively, the second option involves employing decimation filtering in a software post-
processing step on the device connected to the camera. Presently, the decimation filter
algorithm operates by reducing the number of pixels per frame by half, and it can be easily
customized to different filter ratios (reduction of original resolution) according to the
specific requirements of the application. In our tests satisfactory results were achieved
with a resolution of 640x480. It is important to note that recommending a specific content
resolution level for the given use-case is challenging due to the significant reliance on the
available network capabilities and the computational power of the hardware in use.

• Frame rate: The maximum frame rate given in FPS is typically governed by the
capabilities of the camera; for instance, the Intel RealSense camera can handle up to 30

SPIRIT | D2.1: USE CASE REQUIREMENTS, SYSTEM ARCHITECTURE AND INTERFACE

DEFINITION (FIRST VERSION)

© 2022-2025 SPIRIT Consortium Page 18 of 38

FPS. However, it is crucial to minimize network and software disruptions to ensure a
consistent FPS between the sending and receiving ends.

• Playback latency: In this use case of immersive human-to-human interaction, the
playback latency, hereafter referred to as glass-to-glass delay, was found to have an
average value of about 350 ms. This measurement encompasses source delay (camera
data acquisition), processing delay (application software), and destination delay (frame
rendering and visualization), encompassing all latency paths except for network latency.
Tests accounting for network latency are currently underway.

2.1.3.3 Environment requirements of the use case

• Application hardware and configuration: On the producer side, a depth camera is
utilized for gathering spatial and colour information about an object of interest. We highly
recommend the use of an Intel RealSense depth camera, given that the application
software was specifically developed and tested using the Intel RealSense SDK. The
processing component of the producer side necessitates a PC or cloud system with a
minimum of 32 GB of RAM, along with a CPU capable of providing adequate support to
handle the CPU-intensive encoding phase of processing. It is crucial to emphasize that
the Intel RealSense camera only supports a USB 3.0 port. Therefore, a system must have
functional USB 3.0 ports. Alternatively, the camera can be connected to an Ethernet port
via Universal Serial Bus to Internet Protocol (USB-to-IP) conversion using software or
hardware solutions. On the consumer side, an Android mobile phone is essential for the
functionality of the application. During the development and testing phase, the application
used XReal Light AR glasses to display 3D content from the mobile phone. We strongly
recommend the use of the XReal Light AR glasses, as this ensures compatibility with the
consumer application. It is important to note that compatibility of the application is limited
to specific mobile phones when using XReal glasses. Therefore, it is imperative to consult
the list of compatible phones to ensure seamless functionality.

• Network architecture and configuration: The network architecture must enable access
to the Internet to establish a peer-to-peer connection using WebRTC founded by a
signalling procedure using a signalling server hosted in an Ericsson network. Both wired
and wireless network access technologies are viable options. For wireless links, Wi-Fi or
5G NR technology is recommended. In our tests, the minimum necessary bandwidth
averages around 7-10 Mbps when working with 640x480 resolution, contingent upon the
camera's position in relation to the captured object. It is important to acknowledge that the
volume of produced data per time instance, which can be sent over the network, may
exhibit variation due to factors such as frame resolution or the computational power of the
hardware in use. Consequently, the required network bandwidth may vary based on the
specifications.

• Software functionality and configuration: The containerised software on the producer
end, developed in Python, has been successfully implemented and tested on Windows 10
and Debian 13 operating systems. The container includes all necessary dependencies.
On the consumer end, the mobile phone must operate on Android version 11 to ensure
optimal performance. If needed the software can also be adapted to support more recent
Android versions. Tests are ongoing. Additionally, for the AR glasses to function properly,
it is essential to set up the required software provided by the vendor before using the
system with a mobile phone.

SPIRIT | D2.1: USE CASE REQUIREMENTS, SYSTEM ARCHITECTURE AND INTERFACE

DEFINITION (FIRST VERSION)

© 2022-2025 SPIRIT Consortium Page 19 of 38

• Performance metrics: The evaluation of the holographic streaming service relies on a
set of parameters, including measurements of sent/received bitrates. Additionally, the
evaluation considers individual latency components such as source jitter, application
delay, and glass-to-glass delay. Work is currently underway to implement Key
Performance Indicator (KPI) measurement tools to enhance the evaluation process
further.

2.2 REAL-TIME HUMAN-MACHINE INTERACTIONS

2.2.1 Distributed steering of Autonomous Mobile Robots (AMRs)

The demand for autonomous applications is on the rise to address increasing challenges
like growing mobility pains in cities, skilled labour shortage, safer mobility, and
enhanced logistics. An AMR transports goods from A to B. Complex scenarios like loading and
unloading pallets can be a challenging task to fulfil, as the loads can vary in size and weight.
For that reason, distributed steering is available for the operator. Using computer screens, the
operator can control the AMR. The mounted cameras and sensors on the AMR allow the
operator to have the full vision of the vehicle on their screen. After being temporarily controlled
by the operator, the AMR can autonomously manage its route as usual. The operators can
teleport between different vehicles, across multiple sites. Remote operations enhance workers’
safety and increase productivity.

2.2.1.1 Specification of the use case

To drive around an area autonomously, the AMR needs to have a map. The map is created by
the operator who is navigating the AMR remotely through the area. After the map is created,
the AMR knows exactly within which area it can move around. No-go areas can be created
within the map management. The AMRs are running in a typical production environment. The
rectangular hall measures 30x40 meters (1200 square meters). An outside area is also
available. Points of interest (POI) are created within the map to send the AMR from one point
of the hall to another. Using the mounted cameras and sensors, the AMR can detect obstacles,
avoid them and replan its path accordingly. The AMR drives around autonomously but can
also be steered remotely. Remote control is used in the case of loading and unloading or on
special occasions that require a real person to intervene. The mounted cameras and sensors
on the AMR give the operator full visibility to perform. One platform manages all AMRs from
various manufacturers. Several handheld devices (computers, tablets, smartphones) are used
for steering the AMRs, that are all operating in the same network. The objective is to
demonstrate the ability to centralize steering of devices, in particular AMRs, into an edge
computing device, while performing the steering over a wireless network. The data processing
takes place in a local data centre (campus edge cloud) with a centralized device intelligence.
The 5G communication works purely over a private network, through a local core network on
campus, which is exclusively used for internal communication. There is no connection to the
public mobile network / roaming.

2.2.1.2 Application performance target of the use case

The operator sits in a room close to the motion area of the robots, using a multi-screen
workplace to operate them when required. In areas with high demand for motion precision
such as semi-structured warehouses or interaction with other road users such as aisle
intersections, the robots need to have a 1 Gbps upstream capability including camera/radar
data streams to determine the exact positioning of, e.g., pallets and other forklifts, otherwise

SPIRIT | D2.1: USE CASE REQUIREMENTS, SYSTEM ARCHITECTURE AND INTERFACE

DEFINITION (FIRST VERSION)

© 2022-2025 SPIRIT Consortium Page 20 of 38

100s of Mbps upstream capabilities to be able to follow the robot’s motion at all times per
assisted camera based telematics, at all times at below 20 ms end-to-end-latency.

• The round-trip time of the data-pipeline processing on the application layer resulting

in steering action performed by AMR should not exceed 20 ms at any time.

• Upstream bandwidth:

o Following an AMR’s motion at all times per assisted camera-based telematics

should be possible without interruption, requiring 100s of Mbps upstream

bandwidth.

o Controlling an AMR per assisted camera and radar-based telematics at certain

areas of the production environment should be possible without interruption,

requiring 1 Gbps upstream bandwidth.

• The playback latency needs to be consistently below 200 ms to ensure safe

operations with the robot.

• Frame rate: The refresh rate of the use case is limited by the camera being used. In

our case the RGB camera of the Intel RealSense 435 caps out at 30fps.

• Content resolution level: The resolution of the received video streams is adjustable

and supports up to 1280x720 pixels. The resolution is also dependent on the network

and processing power.

• Field of view: A minimum of 4 cameras to give sufficient overview of the robot’s

surroundings to the operator.

2.2.1.3 Environment requirements of the use case

5G private campus network: A controller is used, which serves as the base unit for the 5G
core baseband. It is the central unit that bridges the 5G network to the enterprise network.
Radio equipment provides the signal for the dot antennas, which are placed within the
environment. With the network management portal, the configuration and monitoring of the 5G
site can be done remotely, to observe all devices that are connected. The services in the test
network include IP-based packet-switched data traffic in the 5G network. They are spatially
limited to the defined campus. When using data, the users booked in share the available
bandwidth (so-called shared medium) in the campus mobile cells. Under ideal conditions, the
campus network offers a network latency (RTT) of less than 20 ms, a downlink throughput of
up to 1 Gbps and an uplink throughput of 100 Mbps. The achievable transmission speed during
data usage depends, among other things, on:

• the frequency range used;

• the occupancy/utilisation of the mobile communication cell (the number of users);

• the distance to the antenna and the movement of the user;

• the terminal device used (including its operating system and other software used);

• the transmission speed of the dialled servers.

Edge computing: A local server that is on the campus providing scalable compute/storage
options. The campus ecosystem with its edge computing platform can be seen in Figure 5.
The edge computing platform is an open-source platform, where virtualisation and
containerisation are provided. Central and decentral management is possible. Scaling edge-
based navigation in real-time and knowledge sharing via remote edge cloud infrastructure is a
key capability to provide seamless intralogistics use cases as well as real-time visibility of
process deviations in intralogistics.

SPIRIT | D2.1: USE CASE REQUIREMENTS, SYSTEM ARCHITECTURE AND INTERFACE

DEFINITION (FIRST VERSION)

© 2022-2025 SPIRIT Consortium Page 21 of 38

Control centre: The teleoperation use case runs in a Web-App which is why the control centre
needs to be equipped with a device that is capable of running a Web browser, e.g. a phone, a
tablet or a computer. Ideally, the control centre is also equipped with multiple computer screens
so that the operator can observe multiple camera streams at once. The steering of the robot
can be performed by either phone, tablet, computer keyboard or a controller that is connected
to the computer.

Robot: A driving platform is needed to bring the use case to life. In order to be navigated, the
robot needs to be connected and onboarded to the fleet management system. For the
localisation and autonomous operation of the robot a map of the shopfloor needs to be
recorded and uploaded to the server.

Cameras: To enable the teleoperation of the robot, cameras are needed on the robot to let
the operator see the robot’s surroundings. At the moment, 4 Intel RealSense 435 cameras are
being used as RGB cameras; however, any camera supporting v4linux can be used with our
teleoperation use case.

LiDAR: In order for the robot to record a map and localize itself in the map, it needs to perceive
its environment. For this a LiDAR was mounted and integrated onto the robot. So far, we have
used 2D LiDAR from SICK company and 3D LiDAR from Ouster company; however,
theoretically any LiDAR could be integrated and used.

FIGURE 5: CAMPUS ECOSYSTEM

2.3 POTENTIAL APPLICATION AREAS

In this section we elaborate on a variety of potential telepresence application areas beyond the
project-defined use cases above. The purpose is to outline different categories of telepresence
applications with different requirements that can be potentially supported by the SPIRIT
platform. This also reflects the targeted use cases in different vertical sectors that the project
would like to attract from third-party Open Call participants.

SPIRIT | D2.1: USE CASE REQUIREMENTS, SYSTEM ARCHITECTURE AND INTERFACE

DEFINITION (FIRST VERSION)

© 2022-2025 SPIRIT Consortium Page 22 of 38

XR in Virtual Meetings

Create immersive and realistic virtual meeting spaces, allowing remote participants in different
locations to feel as if they were actually in the same room.

• Provide a two-party or, further, a multi-party audio/video conference in high quality and
a truly immersive user experience for the participants.

• Provide digital whiteboards that allow participants to collaborate on projects in real-time
in brainstorming sessions and problem-solving.

• Enable 3D product demonstrations that allow participants to interact with products in a
virtual environment. Target: sales teams or product designers who need to showcase
their products to remote clients.

• Enable collaborative design on objects in real-time, even if the participants are located
in different parts of the world, e.g., architects constructing buildings.

• Use AR to overlay information onto a physical object to create a more engaging and
immersive presentation environment or to simulate maintenance procedures on
complex machinery.

XR in Assistance and Collaboration

Facilitate real-time collaboration between technicians and support staff, allowing them to work
together to diagnose and resolve issues in real-time. This can be especially useful for
industries that require quick response times, such as healthcare or emergency services.

• Provide remote assistance to people in need. For example, a technician could use AR
to guide someone through the process of fixing a piece of machinery.

• Provide virtual customer service experiences, allowing customers to interact with
support staff in a more immersive and engaging way.

• Create immersive product design environments, where teams can work together to
sketch out ideas and concepts in a virtual space.

• Facilitate real-time collaboration between technicians and support staff, allowing them
to work together to diagnose and resolve issues in real-time to ensure quick response
times, e.g., in healthcare or emergency services.

• Provide remote maintenance services, allowing technicians to perform routine
maintenance tasks or repairs from a remote location.

XR in Training and Education

Create realistic simulations that allow trainees to practice real-world scenarios in a safe,
controlled environment. This can be especially useful for industries that require hands-on
training, such as healthcare or manufacturing.

• Provide remote training and education services, allowing technicians and support staff
to learn new skills or procedures from a remote location.

• Create immersive learning experiences that engage trainees in a more interactive and
memorable way. For example, explore different parts of the human body or learn how
to operate complex machinery.

SPIRIT | D2.1: USE CASE REQUIREMENTS, SYSTEM ARCHITECTURE AND INTERFACE

DEFINITION (FIRST VERSION)

© 2022-2025 SPIRIT Consortium Page 23 of 38

• Create historical reenactments that allow users to experience different periods in time.
For example, pupils can explore ancient ruins or walk through historical landmarks.

• Create cultural immersion experiences that allow users to learn about different cultures
and customs. For example, explore different types of food or learn about traditional
clothing.

• Create virtual role-playing scenarios that allow trainees to practice real-world skills in a
simulated environment, e.g., customer service or sales.

SPIRIT | D2.1: USE CASE REQUIREMENTS, SYSTEM ARCHITECTURE AND INTERFACE

DEFINITION (FIRST VERSION)

© 2022-2025 SPIRIT Consortium Page 24 of 38

3. REQUIREMENTS AND RECOMMENDATIONS

Based on the identified use cases in Section 2, we provide the summary of general
requirements and recommendations derived from the use cases. By requirements we mean
necessary prerequisites that need to be fulfilled by the project team in order to fulfil the
implementation and demonstration of the use cases. For more advanced features, especially
those associated with final commercialisation of the products, we refer to them as
recommendations, where applicable, that may be left open for future investigations even
beyond the SPIRIT project lifetime. The organisation of such requirements and
recommendations is based on the differentiation of the following technical areas: Network,
Transport, Application, Security, and General.

3.1 NETWORK REQUIREMENTS

Network requirements

• Telepresence applications require a network with low latency to ensure that
applications can respond quickly to user input. A end-to-end latency of less than 50 ms
is considered ideal for telepresence applications.

• The SPIRIT platform should have a maximum end-to-end application latency of 100 ms
for real-time interaction. This includes the time it takes to send and receive data to and
from the server and display the results to the user. Low latency is critical for a smooth
and responsive telepresence experience.

• Telepresence applications require a network with high bandwidth to transfer large
amounts of data such as 3D models, textures, and videos in real-time. Regarding the
bandwidth to support a smooth telepresence experience, it is largely depends on the
specific application platforms for which the bandwidth requirements can range across
the order of tens of Mbps.

• The SPIRIT platform should have a minimum bandwidth requirement of 10 Mbps for
basic functionality. This includes streaming of telepresence content, downloading
assets, and sending and receiving data to and from the server.

• Telepresence applications require a reliable network connection to ensure that the
application does not get disconnected or interrupted during use. A network connection
with low packet loss and high stability is important for telepresence applications.

• Telepresence applications should work on both cellular data and Wi-Fi networks.
Cellular data networks are suitable for outdoor use, while Wi-Fi networks are often used
indoors.

3.2 TRANSPORT REQUIREMENTS AND RECOMMENDATIONS

Transport requirements

• Telepresence applications should support multiple users, beyond mere one-on-one
scenarios. One-to-many (e.g. concerts, events, classrooms) or many-to-many (e.g.
large-scale teleconferencing) scenarios should be enabled. The WebRTC protocol

SPIRIT | D2.1: USE CASE REQUIREMENTS, SYSTEM ARCHITECTURE AND INTERFACE

DEFINITION (FIRST VERSION)

© 2022-2025 SPIRIT Consortium Page 25 of 38

suite typically focuses on peer-to-peer connections, but more scalable solutions can be
built using Selective Forwarding Units (SFU), media server components that can be
deployed for limiting bandwidth usage and client connections for adaptive video
streaming. Adapting such components for immersive media formats is an open
research question.

Transport recommendations

• Enable the SPIRIT platform to cache data locally to reduce the amount of data
transmitted over the network. This includes caching of content, assets, and user data.
Caching should be optimised to reduce the amount of data transferred.

• Consider more scalable transport solutions, e.g. Low-Latency MPEG-DASH (Dynamic
Adaptive Streaming over HTTP), not based on peer-to-peer connections (as is
WebRTC). The key issue to investigate here is whether sufficiently low end-to-end
latencies can be achieved for smooth telepresence applications.

3.3 APPLICATION REQUIREMENTS

• Be compatible with a wide range of devices, including smartphones and tablets with
different specifications and operating systems.

• Initialize and load all required assets and modules in a reasonable time.

• Respond quickly to user input, such as touch, gesture, or voice commands. The user
input response time should be less than 100 ms to ensure a smooth and responsive
user experience.

• Enable telepresence applications to send and receive data from the server in real-time
with minimal delay. The network response time should be less than 200 ms to ensure
that applications operate smoothly.

• Enable telepresence applications to render virtual objects in real-time with minimal
delay. The object rendering response time should be less than 50 ms to ensure that
virtual objects appear seamlessly in the user's view.

• Enable telepresence applications to be stable and reliable, and they should not crash
or freeze during use. The applications should be able to handle unexpected inputs and
errors without interrupting the user's experience.

• Respond quickly to errors and provide appropriate feedback to the user. The error
response time should be less than 500 ms to ensure that the user can continue using
the application without interruption.

3.4 SECURITY REQUIREMENTS

3.4.1 Requirements derived from the architecture

To support the SPIRIT security architecture as described in Section 4.2, the following concrete
requirements have been identified for the SPIRIT project:

• Strong encryption of all communication paths in order to protect data-in-transit.

SPIRIT | D2.1: USE CASE REQUIREMENTS, SYSTEM ARCHITECTURE AND INTERFACE

DEFINITION (FIRST VERSION)

© 2022-2025 SPIRIT Consortium Page 26 of 38

• Use of confidential computing mechanisms to protect data-in-use (specifically in the
public cloud or exposed edge computing facilities).

• Implementation of an intrusion detection system (IDS) to protect the telepresence
system.

• Secure identification of participants using identity management solutions tailored to
the specific properties of telepresence systems.

3.4.2 Data protection and privacy

• Inform users about the types of data collected, such as location data, camera feed, or
user input, and how the data will be used.

• Obtain user consent before collecting any personal data or tracking user behaviour.
The consent should be explicit, informed, and revocable at any time.

• Store user data securely and protect it from unauthorized access, modification, or
disclosure. The data should be encrypted at rest.

• Ensure the integrity of user data, including tracking data, user inputs, and server
communications. The application should use encryption and other security measures
to protect user data from unauthorized access or tampering.

• Comply with data protection regulations, such as the General Data Protection
Regulation (GDPR), and other regulations, depending on the type of data being
collected.

• Allow users to delete their data and provide clear instructions on how to do so. The
application should also ensure that the deleted data is completely removed from all
backups and systems.

3.4.3. Secure authentication and authorisation

• Store user credentials securely using techniques such as hashing and salting, and
ensure that the credentials are not stored in plaintext.

• Implement proper authorisation and access control mechanisms to ensure that
users can only access the data and features they are authorised to use.

• Use industry-standard authentication and authorisation protocols such as OAuth,
OpenID Connect, or Security Assertion Markup Language (SAML) to ensure
compatibility with existing authentication and authorisation systems.

• Use secure communication protocols such as Hypertext Transfer Protocol Secure
(HTTPS) or Secure Sockets Layer (SSL) / Transport Layer Security (TLS) to encrypt
the data in transit and prevent interception or tampering.

• Implement proper session management techniques such as session timeouts,
session invalidation on logout, and protection against session hijacking or fixation
attacks.

3.4.4. Protection against malicious attacks

• Use secure coding practices to prevent common security vulnerabilities such as SQL
injection, cross-site scripting, or buffer overflow attacks.

SPIRIT | D2.1: USE CASE REQUIREMENTS, SYSTEM ARCHITECTURE AND INTERFACE

DEFINITION (FIRST VERSION)

© 2022-2025 SPIRIT Consortium Page 27 of 38

• Encrypt all sensitive data such as user credentials, payment information, or location
data, both in transit and at rest.

• Protect against malware and viruses by using antivirus software and keeping the
software updated with the latest security patches.

• Protect against denial-of-service attacks by appropriate architectural design to
handle denial-of-service attacks such as network flooding or resource exhaustion
attacks.

• Continuously monitor for security threats and anomalies, and appropriate
measures should be taken to mitigate them.

3.5 GENERAL RECOMMENDATIONS

This section provides general recommendations to be considered for the design and
development of the SPIRIT platform, the selection of end-point devices, and the
implementation of user applications.

3.5.1 SPIRIT platform

In this section recommendations for two aspects of the SPIRIT platform are provided. The first
aspect is about the handling of a growing number of concurrent users with its increase of data.
The second is about maintainability, modularity, and extensibility of the SPIRIT platform.

Growing number of users and large amounts of data

• Design the SPIRIT platform to handle increased user activity and data processing
requirements. This includes optimising performance to ensure smooth operation even
when processing large amounts of data.

• Enable the SPIRIT platform to handle increased data storage requirements as the user
base grows. This includes implementing scalable data storage solutions that can
handle large amounts of data efficiently.

• Enable the SPIRIT platform to integrate with cloud services for scalability. This
includes using cloud-based infrastructure for data storage, processing, and delivery to
ensure handling increased traffic and data processing requirements.

• Design the SPIRIT platform with load balancing capabilities to distribute server
requests across multiple servers. This helps to prevent server overload and ensures
the handling of increased traffic and user activity.

• Design the SPIRIT platform with automated scaling capabilities to automatically
adjust resource allocation based on traffic and user activity.

• Design the SPIRIT platform being compatible with future updates and new
technology.

• Design the SPIRIT platform to support scalable orchestration of computational and
networking resources to meet latency and throughput requirements from applications,
while taking available resource capacity into account.

• Enable the SPIRIT platform to integrate with broadcasting / multicasting capabilities
to support efficient transport of common content to multiple users.

SPIRIT | D2.1: USE CASE REQUIREMENTS, SYSTEM ARCHITECTURE AND INTERFACE

DEFINITION (FIRST VERSION)

© 2022-2025 SPIRIT Consortium Page 28 of 38

• Test the SPIRIT platform for scalability to ensure that it can handle increased traffic
and user activity without affecting performance. This includes conducting load tests and
stress tests to identify any performance issues and optimise the platform's scalability.

Maintainability, modularity and extensibility

• Have a modular architecture that allows to add new features or remove existing ones
without affecting other parts of the platform. This can be achieved by using well-defined
interfaces and separating the platform into components.

• Provide configurability options that allow to enable or disable features according to
the use case needs.

• Provide extensible Application Programming Interfaces (APIs) that allow to create
customisations and extensions that can be integrated into applications. This can be
achieved by providing well-defined interfaces and documentation that describes how
to use them.

• Include proper error handling techniques to ensure that applications can gracefully
handle errors and exceptions. This includes logging errors and providing clear error
messages.

• Use version control tools like Git to manage the codebase or components, and track
changes.

• Design the SPIRIT platform in such a way that it is easily testable.

• Document the SPIRIT platform to ensure that developers can easily understand how
the platform works and how to extend it. This can be achieved by providing detailed
documentation that describes the architecture, APIs and other important aspects of the
platform.

3.5.2 End-point device capabilities

The end-point devices are use-case-specific therefore these recommendations are quite
general. In some use case the end-point device functions are distributed on more than one
device. For instance, GPU processing can be done on the edge cloud, and the local device
just combines this output with local information to render the user’s view.

• Have a high resolution, high frame rate, and low latency camera. It should also support
auto-focus and have a wide field of view to capture a large area. Capture images from
the device's camera and process them in real-time with minimal delay.

• The Inertial Measurement Unit (IMU) includes sensors such as accelerometers,
gyroscopes, and magnetometers. These sensors help in determining the device's
position and orientation in real-time. The IMU should have high accuracy, low latency,
and low drift.

• A depth sensor such as LiDAR or Time-of-Flight (ToF) sensor can improve the
accuracy by providing 3D depth information about the environment. It can help in better
object tracking, occlusion, and depth perception.

• The processor should be powerful enough to handle the computational requirements
of the application. It should have multiple cores and a high clock speed for faster
processing.

SPIRIT | D2.1: USE CASE REQUIREMENTS, SYSTEM ARCHITECTURE AND INTERFACE

DEFINITION (FIRST VERSION)

© 2022-2025 SPIRIT Consortium Page 29 of 38

• The GPU should be powerful enough to handle the graphics-intensive content. It should
have multiple cores and a high clock speed for fast rendering.

• The device should have a high battery capacity and support fast charging to ensure
that the battery lasts for a reasonable amount of time.

3.5.3 User interface design

• Have a clear and intuitive navigation system that allows users to easily access all
features and functions.

• Have a responsive and interactive user interface that provides a seamless
experience for users.

• Follow a consistent design language that is in line with the overall brand and user
experience.

• Make use of visual cues such as arrows, pointers, or highlights to guide users to
relevant elements or actions.

• Consider the capabilities and limitations of the device it is being used on. For
example, the user interface should be designed to work with the device's screen size
and resolution, as well as its processing power and battery life.

• Have an intuitive user interface that is easy to navigate and understand, with clear
instructions and visual cues.

• Provide a smooth user experience with minimal lag or delays, allowing users to
interact with XR elements seamlessly.

• Provide realistic interactions with XR elements, such as realistic physics or
movement, to create a good immersive experience.

• Provide haptic feedback, such as vibration or force feedback, to enhance the user
experience and provide additional sensory input.

• Incorporate gesture-based interactions, such as swiping or tapping, to allow users to
interact in a natural and intuitive way.

• Incorporate voice-based interactions, such as voice commands or voice recognition,
to allow users to interact with AR elements hands-free.

• Allow users to customize their settings, such as the sensitivity of gesture-based
interactions or the level of haptic feedback.

• Provide user feedback, such as visual or auditory cues, to let users know when an
action has been successfully completed or if there are any errors.

• Have effective error handling, with clear and concise error messages that provide
users with guidance on how to correct any issues.

• Security: Validate all user input to prevent input validation attacks such as command
injection or cross-site scripting attacks.

• Stability: The application should be stable and reliable, and it should not crash or
freeze during use. The application should be able to handle unexpected inputs and
errors without interrupting the user's experience.

SPIRIT | D2.1: USE CASE REQUIREMENTS, SYSTEM ARCHITECTURE AND INTERFACE

DEFINITION (FIRST VERSION)

© 2022-2025 SPIRIT Consortium Page 30 of 38

4 THE SPIRIT ARCHITECTURE

In this section we first present the initial design of the general SPIRIT architecture in Section

4.1, then we describe the security architecture in Section 4.2.

4.1 SPIRIT PLATFORM ARCHITECTURE

FIGURE 6: HIGH-LEVEL SPIRIT PLATFORM ARCHITECTURE

Figure 6 shows the high-level SPIRIT architecture with a layered view. Starting from the lower
level of the architecture, the network infrastructure consists of an underlying computing and
communication platform for hosting necessary network and application functions, and also for
enabling the transmission of telepresence media between remote endpoints on the Internet.
Specifically, on the network side 5G-based environments are provisioned at different testing
sites, providing required connection services to specific use case applications to be operated
in a distributed fashion. On the computing side, virtualised and containerised computing
platforms are also provisioned for hosting and executing developed software functions.

Above the network infrastructure layer is the layer of end-to-end transport support. It is

responsible for the end-to-end connection management and control between end hosts.

Typically, these transport protocol libraries consist of transport protocols such as

TCP/UDP/QUIC as well WebRTC and Low-latency DASH (LL-DASH). The selection of a

specific transport layer protocol depends on the use case requirements. Different telepresence

applications can be supported by the appropriate transport protocols and their optimised

configuration parameters according to specific application requirements and network

conditions. The layer of application platform components consists of a variety of software-

based functions developed by the SPIRIT project for facilitating tailored treatment of specific

use cases in dynamic network environments. Examples of such software functions include

content modification, network monitoring, resource adaptation and allocation, support of

multicast and service function chaining (SFC), and security protection. The detailed

specification of these developed functions for innovation is provided in D3.1 [10] and its follow-

up deliverables in WP3. At the top of the SPIRIT architecture is the set of use case applications

SPIRIT | D2.1: USE CASE REQUIREMENTS, SYSTEM ARCHITECTURE AND INTERFACE

DEFINITION (FIRST VERSION)

© 2022-2025 SPIRIT Consortium Page 31 of 38

developed by the project team and third-party participants. Broadly speaking, these

applications can be classified into the following two categories: human-to-human telepresence

applications that are oriented to the immersive communication services between remote users,

and human-to-machine interaction applications that allow remote interaction and control

operations between human and machine-based objects such as robots. The use case

applications developed by the SPIRIT project are described in Section 2 of this deliverable and

future use cases including those provided by third-party participants will be included in future

WP2 deliverables.

Figure 7 presents a more detailed view of the architecture diagram. On the network
infrastructure side, Deutsche Telekom (DT) and University of Surrey (UoS) provide respective
testbed facilities to constitute the end-to-end SPIRIT testing network infrastructure. Both sites
are equipped with integrated 5G-based network access services as well as
virtualised/containerised computing environments in order to support the operation of use case
applications. These two testbeds will also be interconnected, allowing real-life, Internet-scale
testing of the developed telepresence applications. Detailed information on the two testing
sites is provided in D4.1 [11]. As mentioned above, the layer of transport support enables
tailored customisation of transport protocols (TCP/UDP/QUIC and WebRTC, LL-DASH) and
their configuration of control parameters towards optimised and stable application
performances. The application platform components are developed to provide various
supports for the operations of telepresence applications. Examples (components developed
by the project partners) include resource monitoring and feedback, path adaptations based on
learning, split rendering functions, enhancements on Unity components etc. During the project
lifetime additional component functions will be developed by both the project team and third-
party participants for supporting respective application use case operations. Concerning
project-defined use cases, we classify them into human-to-human and human-to-machine
oriented applications. On top of this, we further show in the diagram typical application-specific
functions on the source and destination sides, such as encoding/decoding, content adaptation,
and viewer behaviour sensing. For human-to-machine oriented cases, control command
functions and action functions are also embedded.

SPIRIT | D2.1: USE CASE REQUIREMENTS, SYSTEM ARCHITECTURE AND INTERFACE

DEFINITION (FIRST VERSION)

© 2022-2025 SPIRIT Consortium Page 32 of 38

FIGURE 7: DETAILED SPIRIT PLATFORM ARCHITECTURE

A list of interfaces and entry points to the different application platform elements is proposed
within the architecture. They can be used by the Open Call participants to integrate their own
solutions using the already available components provided by the SPIRIT partners and extend
their functionality. A list of available Web interfaces, libraries and modules is included here as
a reference:

• Kubernetes orchestrator Web interface
o In order to allow experimenters to manage the computational resources on

which they deploy their application containers, a Web interface to the
Kubernetes orchestrator is available on the testbeds. Resource scheduling can
be made network-aware (using the SPIRIT Diktyo scheduler instead of the
default K8s scheduler) to ensure low-latency and high-throughput
requirements.

• Real-Time Animation and Streaming of Realistic Avatars
o Split Rendering & Streaming module: Any 3D object/avatar can be placed in the

Unity central application and used together with the rendering and streaming
component.

o Real-time animated avatar: A previously generated avatar can be animated
from text or audio, providing an updatable mesh and texture.

o Media capture client application: A media capture client application incorporates
an audio capture component, enabling the application to utilise media produced
by users.

• Holographic Communication
o Content: Real-time holographic streaming delivery with the option to manually

configure the quality and data size of the holographic content, i.e., 3D
representation by means of filtering and compression techniques depending on
network and QoE requirements.

SPIRIT | D2.1: USE CASE REQUIREMENTS, SYSTEM ARCHITECTURE AND INTERFACE

DEFINITION (FIRST VERSION)

© 2022-2025 SPIRIT Consortium Page 33 of 38

o Producer client application: A media and spatial information acquisition
component that can be used for any application supporting network or USB
connections.

o Consumer client application: A decoding and rendering component that can be
leveraged to visualise encoded 3D data received from the producer client
application using wireless network access technologies such as Wi-Fi or 5G.

4.2 SECURITY ARCHITECTURE

4.2.1 Security challenges

4.2.1.1 Cloud-based applications and frameworks

More and more companies move workloads from on-premise systems in their own datacentres
to shared resources provided by public cloud providers (such as Amazon AWS, Microsoft
Azure, Google Cloud and others). The advantages of this approach are – among others – cost
reduction and more flexible resource allocation.

However, this move to cloud resources creates some security headaches:

• While data is nowadays normally encrypted while in transit, it must be decrypted in the
cloud to allow processing.

• This leaves possibly sensitive data open to theft and government surveillance.

• Most cloud providers are headquartered outside of the European Union, therefore
achieving regulatory compliance (GDPR) can be difficult or impossible to achieve for
European data owners.

These considerations are especially pertinent for cloud-based telepresence frameworks and
applications developed in the SPIRIT project, as these applications naturally involve the
processing of personal data.

4.2.1.2 Identity management in telepresence applications

Identity management in telepresence applications is a problem because it is difficult to ensure
that the person controlling the telepresence device is who they claim to be. This can lead to
issues such as unauthorized access to sensitive information or physical spaces, as well as
impersonation and deception. Additionally, telepresence systems often involve multiple parties
and different levels of access, making it challenging to manage and control access to different
resources. Ensuring secure and reliable identity management in telepresence applications
requires the use of robust authentication and authorisation methods, as well as ongoing
monitoring and auditing of access.

4.2.1.3 Attack surface of distributed systems

The attack surface of a distributed system – and a telepresence system is distributed by nature
– is large because a distributed system typically consists of multiple interconnected
components that are spread across different locations and networks. This can include servers,
clients, network devices, and other devices that are connected to the system.

SPIRIT | D2.1: USE CASE REQUIREMENTS, SYSTEM ARCHITECTURE AND INTERFACE

DEFINITION (FIRST VERSION)

© 2022-2025 SPIRIT Consortium Page 34 of 38

Additionally, distributed systems often involve communication between different components,
which can involve multiple protocols and ports. This increases the potential for vulnerabilities
and attack vectors that can be exploited by attackers.

Furthermore, distributed systems often operate over the public Internet, which can make them
more susceptible to attacks such as denial of service (DoS) and distributed denial of service
(DDoS) attacks.

Additionally, distributed systems usually have more complex configurations and
interconnections than centralised systems, adding more complexity to the system and making
it harder to secure and monitor.

Finally, distributed systems often rely on third-party services, such as cloud providers, which
can introduce additional security risks.

Overall, the large attack surface of distributed systems is due to the complexity and
interconnectedness of the system, the multiple communication channels, and the use of public
networks, which can make it more difficult to detect and defend against attacks.

4.2.2 Architectural elements

4.2.2.1 Confidential computing

Confidential computing offers a possible solution to this conflict of goals as laid out in the
previous section, by offering enhanced security of data processing in the cloud while keeping
the advantages of moving to shared resources.

When workloads are moved from on-premise deployments to the cloud, new attack surfaces
are exposed that did not exist in the own data centre: The cloud trusted computing base (TCB)
additionally encompasses the management systems of the cloud provider, its employees, as
well as government agencies from the jurisdiction of the cloud provider.

Similar security concerns exist when deploying workloads to edge devices: Here the devices
may also be under the control of an edge provider (e.g., a telecom operator) or they may be
deployed in exposed locations where they may be physically compromised by bad actors (e.g.,
road-side units).

In this context, we introduce the concept of secure remote computation (also referred to as
confidential computing in this document) as the problem of executing software on a remote
computer owned and maintained by an untrusted party, with some integrity and confidentiality
guarantees.

A possible solution would be to end-to-end encrypt data while traversing cloud systems. This,
however, would not allow for any meaningful and performant processing of data in the cloud.
New mathematical approaches such as homomorphic encryption allow some limited
processing on encrypted data but incur an extreme overhead and are only suitable for very
limited application scenarios. Basically, the processing of encrypted data is a field of active
research not ready for wide-spread commercial application. In the general setting, secure
remote computation is an unsolved problem. Fully Homomorphic Encryption solves the
problem for a limited family of computations but has an impractical performance overhead [12].

SPIRIT | D2.1: USE CASE REQUIREMENTS, SYSTEM ARCHITECTURE AND INTERFACE

DEFINITION (FIRST VERSION)

© 2022-2025 SPIRIT Consortium Page 35 of 38

Figure 8 presents a new approach: end-to-end security, where data in transit is encrypted and
only provably trustworthy cloud applications can break up this encryption to process and store
the confidential data. To exclude the cloud provider itself from the TCB of the application, any
solution must provide robust security guarantees that can also be verified by remote parties
before delivering their potentially confidential data to the cloud.

FIGURE 8: END-TO-END SECURITY

4.2.2.2 Identity management

Identity management in the context of telepresence refers to the process of ensuring the
authenticity and integrity of the identity of users interacting through telepresence systems. This
can include both human users and robotic avatars.

One approach to identity management in telepresence is to use biometric authentication
methods such as facial recognition, fingerprint scanning, or voice recognition. These methods
can help to ensure that the person operating the telepresence system is who they claim to be.

Another approach is to use digital certificates and encryption to secure the communication
between the telepresence system and the remote user. This can help to prevent unauthorised
access to the system and protect the privacy of the user.

Overall, a combination of different identity management approaches can be used to ensure
the security and privacy of telepresence systems, and to prevent unauthorised access to the
system.

4.2.2.3 Intrusion detection systems

IDSs play an important role in ensuring the security of telepresence systems. These systems
monitor network traffic and identify suspicious activity that may indicate an attempted intrusion
or attack.

One approach to intrusion detection in telepresence systems is to use signature-based
detection methods. This approach involves comparing network traffic against a predefined set

SPIRIT | D2.1: USE CASE REQUIREMENTS, SYSTEM ARCHITECTURE AND INTERFACE

DEFINITION (FIRST VERSION)

© 2022-2025 SPIRIT Consortium Page 36 of 38

of known attack signatures. If a match is found, the system can take appropriate action to block
the attack.

Another approach is to use behaviour-based detection methods, which involve monitoring
network traffic for patterns of activity that are unusual or indicative of an attack. This approach
is useful for detecting new, unknown attacks that may not have a known signature.

A third approach is to use machine learning-based detection methods, which can learn and
then adapt the normal behaviour of the system and detect anomalies that may indicate an
attack. These methods can also be combined with other techniques to improve the accuracy
of intrusion detection.

Overall, intrusion detection systems are essential to ensure the security of telepresence
systems, and a combination of different intrusion detection techniques can be used to provide
comprehensive security coverage.

SPIRIT | D2.1: USE CASE REQUIREMENTS, SYSTEM ARCHITECTURE AND INTERFACE

DEFINITION (FIRST VERSION)

© 2022-2025 SPIRIT Consortium Page 37 of 38

5 CONCLUSIONS

This deliverable provides the first version of the SPIRIT use cases, derived application and
system requirements, and the initial design of the overall SPIRT architecture. The use cases
identified by the project team covers a wide variety of remote telepresence application
scenarios, including both live human-to-human communications (with and without Avatars) and
real-time human-to-machine interactions. In addition, this deliverable also outlines the broad
scope of future desirable use case scenarios in different vertical sectors, which can be used
as guidelines for attracting the participation of new application development by third-party
participants. Based on these use cases, the project team have also derived a range of
requirements and recommendations in the areas of network and transport support, as well as
on the application and security sides. An initial version of the overall SPIRIT architecture is
also documented in this deliverable, encompassing key architecture components of the SPIRIT
platform. Such an architecture is supposed to provide high-level guidance on the building of
the actual SPIRIT platform, including the underlying 5G based network testbeds, the flexibility
of adopting different transport protocols, the fundamental application platforms with embedded
functional components developed by the project team, as well as the over-the-top telepresence
application use cases.

SPIRIT | D2.1: USE CASE REQUIREMENTS, SYSTEM ARCHITECTURE AND INTERFACE

DEFINITION (FIRST VERSION)

© 2022-2025 SPIRIT Consortium Page 38 of 38

6 REFERENCES

[1] M. Kowalski, J. Naruniec, M. Daniluk, “Livescan3D: A Fast and Inexpensive 3D Data
Acquisition System for Multiple Kinect v2 Sensors”, Proc. IEEE International Conference
on 3D Vision, 2015

[2] S. Anmulwar, N. Wang, V. S. H. Huynh, S. Bryant, J. Yang, R. R. Tafazolli, “HoloSync:
Frame Synchronisation for Multi-Source Holographic Teleportation Applications”, IEEE
Transactions on Multimedia, vol. 25, pp. 6245-6257, 2023

[3] ZSTD compression, Zstandard - Real-time data compression algorithm, available at:
http://facebook.github.io/zstd/

[4] Azure Kinect Body Tracking SDK, available at: https://learn.microsoft.com/en-
us/azure/kinect-dk/body-sdk-download

[5] Microsoft MRTK3 Mixed Reality Toolkit 3 Developer Documentation, available at:
https://learn.microsoft.com/en-us/windows/mixed-reality/mrtk-unity/mrtk3-overview/

[6] J. Son et al. "Split Rendering for Mixed Reality: Interactive Volumetric Video in
Action", Proc. SIGGRAPH Asia 2020 XR, 2020

[7] Ericsson Consumer and Market Insight report, Five ways to a better 5G, available at:
https://www.ericsson.com/en/reports-and-papers/consumerlab/reports/five-ways-to-a-
better-5g

[8] Ericsson Consumer and Market Insight report, 5G consumer potential, available at:
https://www.ericsson.com/en/reports-and-papers/consumerlab/reports/5g-consumer-
potential

[9] Ericsson Consumer and Market Insight report, The dematerialized office, available at:
https://www.ericsson.com/en/reports-and-papers/industrylab/reports/the-dematerialized-
office

[10] SPIRIT Consortium, “Innovation Platform Enablers (First Version),” Project "Scalable
Platform for Innovations on Real-time Immersive Telepresence", EC grant agreement
101070672, 2023.

[11] SPIRIT Consortium, “SPIRIT Platform (First Version),” Project "Scalable Platform for
Innovations on Real-time Immersive Telepresence", EC grant agreement 101070672,
2023.

[12] El Makkaoui, Khalid, Abderrahim Beni-Hssane, and Abdellah Ezzati. "Cloud-ElGamal:
An efficient homomorphic encryption scheme." 2016 International Conference on Wireless
Networks and Mobile Communications (WINCOM). IEEE, 2016.

http://facebook.github.io/zstd/
http://facebook.github.io/zstd/
https://www.ericsson.com/en/reports-and-papers/consumerlab/reports/five-ways-to-a-better-5g
https://www.ericsson.com/en/reports-and-papers/consumerlab/reports/five-ways-to-a-better-5g
https://www.ericsson.com/en/reports-and-papers/consumerlab/reports/5g-consumer-potential
https://www.ericsson.com/en/reports-and-papers/consumerlab/reports/5g-consumer-potential
https://www.ericsson.com/en/reports-and-papers/industrylab/reports/the-dematerialized-office
https://www.ericsson.com/en/reports-and-papers/industrylab/reports/the-dematerialized-office

